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ABSTRACT 

Nonlinear effects, or non-Wiener behavior, have been 
observed in several adaptive filtering applications, such as 
adaptive equalization of wideband communication signals 
contaminated by narrowband interference, adaptive 
narrowband noise cancellation, and adaptive linear 
prediction of narrowband processes. The nonlinear effects 
have been especially prominent when narrowband 
processes have been involved, and revealed by 
performance better than expected from the conventional 
Wiener filter for that scenario Furthermore, in the 
adaptive noise-canceling scenario, almost deterministic 
semi-periodic dynamic behavior of the adaptive filter 
weights has been observed In the adaptive equalization 
and prediction scenarios the weight behavior is also 
dynamic, albeit of a different nature. The dynamic weight 
behavior associated with nonlinear effects is shown to be 
the result of how the conventional NLMS adaptive filter 
tracks the equivalent model for the desired signal. 

I. INTRODUCTION 

Non-linear effects have been demonstrated in adaptive 
noise canceling [1, 2], interference contaminated adaptive 
equalization [1. 3], and adaptive linear prediction [4]. 
Often these nonlinear effects are strongest when involving 
narrowband processes and when adaptive filter stepsizes 
are relatively large. The nonlinear, or non-Wiener, effects 
are characterized by performance better than that of the 
Wiener filter of the same structure, and by dynamic or 
time-varying behavior of the adaptive filter weights. 

As was shown for the noise canceling, equalizer, and 
prediction contexts [1 -4], nonlinear effects arise in LMS 
as well as NLMS adaptation. We concentrate here on use 
of the NLMS algorithm. The nonlinear effects were 
attributed to the error signal feedback, which is used in the 
NLMS weight update, and led to the establishment of a 
bound for the performance under nonlinear effects [2]. 

We show that the mechanism, by which the error 
feedback results in the observed nonlinear effects, is 
associated with the instantaneous information it carries 
about the deviation between the desired signal and its 
NLMS modeled version. The structure for the desired 
signal will be related to the underlying optimal estimator. 

which may have a structure that does not fit the 
conventional NLMS tapped delay line model When the 
structure underlying the desired data differs from the 
NLMS model that is being adapted, the potential for non- 
Wiener effects is created. We show that NLMS adaptation, 
by virtue of its inherent tracking capability, can often form 
a time-varying tapped delay line model that reasonably 
well approximates an underlying, time-varying Wiener 
filter equivalent. 

2. NLMS ADAPTATION 

The NLMS adaptation algorith m is as follows: 

K = wX 
e» = dn~dn 

w„+1 = w„+p *n u„ u"u 

(I) 

To emphasize the situations under which nonlinear effects 
are prominent, a large stepsize is chosen. JI = 1. so that 
adaptation is the fastest. Furthermore, it can then be shown 
that the a posteriori error equals zero [5], i.e. 

0 
(2) 

An additional property of the NLMS algorithm is that 
the a posteriori weight vector is such that the norm of the 
weight vector increment is minimized, while (2) serves as 

the constraint. Note from (1) that the change from W n to 

Wn+1 is by necessity in the direction of U,?. If the desired 

signal dn has the same structure as that used in the 

modeling   process,   i.e    dn =W()U„   for  some   fixed 

weight vector Wfl. then the NLMS adaptation converges 

to that weight vector (it produces a posteriori errors of 
zero and weight vector increment norms of zero). 

From (1) we see that the current estimate for the 
desired signal depends on the current weight vector and 
the current input, while the current weight vector depends 



on the previous weight vector, the previous error, and the 
previous input, etc. Assuming that we operate in steady 
state, so that the effects of the initial weight v ector choice 
have vanished, the current estimate for the desired signal 
is some function of all past desired signal samples and all 
current and past samples of the input vector elements. 

dn=fct\{dj"   ,{um}" (3) 

This NLMS estimate is not necessarily optimal. 

3. WIENER FILTERS & DATA STRUCTURES 

If we assume that the processes in (3) are jointly Gaussian 
and wide-sense stationary then the optimal (Wiener) 
estimate for the desired signal is time-invariant and linear. 

4«* =£#***+5>?«^ (4) 
k l (  (i 

If the processes are such that only a finite memory depth is 
required, say of /. and M samples respectively, then the 
optimal estimator takes on the following structure. 

/ A/-I 

k=\ fc=0 

We note that the latter can be rewritten as follows: 

d 

(5) 

n.opt t <w 
opl 

HuH 
op, 

'rt-1 

u (6) 

=«c«„ 
The consequence of this development is that we now 

have an underlying structure for the desired data itself. 

a n n.opt n.opt 
(7) 

This structure shows that the desired data can be 
represented with a two-channel LTI model, and that the 
corresponding representation error equals the two-channel 
Wiener filter error 

The model inherent in the NLMS algorithm in (1) is of 
the form of the structure in (6). The distinction lies in 
whether Un or Uw is used. The difference resides in the 

importance of the past of the desired signal samples. If 

there is no information in   \d m \ about  d„. then 

effectively U„ is the same as U„. and NLMS - that is to 

say W„ - converges to (a neighborhood of) h . NLMS 

then approaches the Wiener filter in performance 

The difference between the conventional  and two- 
channel cases lies in the definition for the NLMS input 

vector un. For a general two-channel case, the NLMS 

input vector can be defined as follows 

(8) 

The vectors xn and tn are referred to as the auxiliary and 

the   reference   channel   respectively    The   conventional 
NLMS   algorithm   uses   only   the   so-called   reference 
channel, i.e. UH = rn   In order to match the structure of 

the optimal  estimator in (6). the NLMS input would 
contain an auxiliary  channel   \n =d„_,. The auxiliary 

channel definition depends on the application 
The corresponding Wiener filter (WF) designs follow 

from the Wiener-Hopf equation. 

k    rf] w d" (9) 

The performance of the resulting WF. using /. auxiliary 
taps and M reference taps, is given by 

MMSE, WF(LM) >W (10) 

The nonlinear effect scenarios usually corresponded to 
(jointly) wide-sense stationary processes, in which case 
the resulting WF solutions are linear time-invariant (LTI) 
filters. The two-channel Wiener filter design and 
performance evaluation are based on auto- and cross- 
correlation information, and can be done efficiently [6. 7]. 

4. APPLICATION SCENARIOS 

For each application scenario, the two-channel version is 
reflected in the figures below For each of the input 
channels a tapped delay line exists internal to the NLMS 
structure. Conventional NLMS does not use xn. i.e.. the 

auxiliary channel partition of the input is inactive. 
The adaptive noise-canceling (ANC) scenario is 

reflected in Fig. 1. Its aim is to predict a desired signal 
from a reference input, which presumably contains 
information about the desired signal because it is 
correlated therewith. In many cases performance is 
increased when the desired signal is estimated from its 
own immediate past, rather than from a different signal. 
The choice for the auxiliary signal in ANC is therefore the 

immediate past of the desired signal, i.e. \n =d,M 
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Fig. 1. ANC scenario 

The interference contaminated adaptive equalization 
(AEQ) scenario, in training mode, is reflected in Fig. 2. 

Fig. 2. AEQ scenario. 

Nonlinear effects were reported for scenarios where the 
interference in was strong relative to the signal sn . which 

itself was strong relative to the noise nn . In this case we 

choose in_D . the interference at the center tap where the 

signal estimate is desired, as the auxiliary channel. 
The adaptive linear prediction (ALP) scenario is 

reflected in Fig. 3. In this case we are interested in 
predicting the desired signal from its far past, i.e. A and 
more samples in the past. Generally a signal can be 
predicted much better from its recent past than from its far 
past, so that the immediate past is chosen here as the 
auxiliary channel. 

From the Wiener filtering point of view, the reference 
signal is related to the desired signal in each of the above 
cases. In ANC we assume there is statistical correlation 
between the two. in AEQ the desired signal is a 
component of the reference signal, and in ALP the 
reference signal is the far past of the desired signal. 

Fig. 3. ALP scenario. 

5. TIME-VARYING WIENER FILTERS 

Strong nonlinear effects have been observed for 
narrowband processes, which are modeled well with an 
AR(1) model. For these processes, together with high 
signal to noise ratios, the Wiener filter of (6) - for 
increasing /. and M - very quickly saturates to the Wiener 
filter of (4). The latter happens for L - 1 in ANC. ALP 
and AEQ [8]. Consequently, the desired signal has an 
underlying structure as given in (7), where - furthermore 
the dimension of the auxiliary channel vector is one. The 
corresponding data structure can be written as follows. 

K"n + 

k; K\ 
n.opl 

X. (11) 
+ £ n.opl 

We use the concept of linking sequences pn   [8], 

p1" = -=2- r n-i (12) 

to write the data structure in (11) in equivalent form 

d„=K< Pi---V,  +>Cr"+ En,p, •opt 

opt fcp^C+Ck+e,,, 
opt 

•H 
<pt. 

(13) 

The vector 1/+, has a 1 in the (/+l)sl position as its only 

non-zero element The auxiliary signal can be linked with 
any of the elements in the reference vector, so that the 
following affine combination is the most general 
equivalent data structure. 

d = yahx'o{,)\" +hrH 
Z^ u: "opt Hn~i ' ; + l  T u opt r„ +£ n .opt (14) 



The bracketed term represents Wiener filter coefficients 
operating on the reference vector only, while still incurring 
the error of the optimal two-channel Wiener filter. This 
reference-only Wiener filter equivalent has a time-varying 
component, due to the presence of the linking sequences, 
in addition to a time-invariant component, corresponding 
to the reference partition of the two-channel WF weights 

The model inherent in conventional NLMS. as in (1), 
is of the same form as the first term in (14). The latter 
affine combination represents the manifold of weight 
vector solutions from which NLMS takes its a posteriori 
weight vector, while minimizing the norm of the change in 
the weight vector. If the NLMS weights could capture the 
behavior of the bracketed term in (14), NLMS 
performance would equal that of the two-channel 
(optimal) Wiener filter. In practice. NLMS can capture a 
time-varying weight vector a posteriori at best, so that 
NLMS a priori performance is reduced - relative to the 
optimal two-channel WF performance - by tracking error 
as well as estimation error. Nevertheless, in many 
scenarios, conventional NLMS may be able to track to the 
extent that its performance is better than that of the 
corresponding conventional Wiener filter. 

6. DYNAMIC WEIGHT BEHAVIORS 

For high SNR conditions, and in scenarios as indicated in 
the previous section, the bracketed term in (14) forms the 
target weight vector for NLMS. This implies that the 
weight behavior of NLMS. in particular for a stepsize 

JI = 1. follows the behavior indicated above. This 

behavior depends on the linking sequences, which in turn 
depend on the particular application scenarios. 

We now illustrate the dynamic weight behavior for the 
ANC  scenario   with   narrowband   AR( 1)  signals  (with 

desired and  reference complex  poles at   pd   and   pr 

respectively),   for   (L,M) = (\,2) 

term in (14) we then find [8] 

For the  bracketed 

hx* £>""* «0PdPr 
+ Kn, [15) 

where the t]'n  and X\rn terms are results due to the driving 

noises of the corresponding AR(1) processes.  For the 
remaining linking sequence the following holds: 

P',-1    =P.lPr   Pn-2   + W 

\Pd\   -/(»,-«,)    (0). p 
~  I        I e Kn-2   ^ 'In 

\Pr\ 

(16) 

Apart from the stochastic terms due to AR(1) driving 
noises and the time-invariant term corresponding to the 

reference partition of the optimal two-channel WF. the 
weight vector target for NLMS is seen to consist of a time- 
varying term that rotates from sample to sample by the 
difference of the center frequencies of the desired and 
reference processes. Further note from (15) that the second 
weight vector element is rotated with respect to the first 
weight vector element by the complex conjugate of the 
reference pole. 

To illustrate the dynamic NLMS weight behavior, for 

the ANC case, let SNR = 80dB.   pd = 0.99e7"7\ 

and pr — 0.99^ ' . Fig. 4 shows the absolute error in 

dB. during iterations 4700-5000, which is in steady state. 

4800 4850 4900 
Iteration Number 

Eig. 4. Steady-state NLMS (light) and WF (dark) error. 

We observe that NLMS outperforms the LTI WF. 
almost on a sample-for-sample basis. Over the steady-state 
interval. WF(0.2) - the implementation of the optimal WF 
- realizes MSE of 15.82 dB, while NLMS(0.2) realizes 
MSE of 12.04 dB. The theoretical min MSE is 16.92 dB; 
WF(0.2) is about 1 dB less because the signal power in 
this realization is about 1 dB lower than its expected value 

Fig. 5 shows the dynamic weight behavior of NLMS 

4800 4850 4900 
iteration index 

Fig. 5. NLMS and WF (constant) weight behavior 



The behavior of the imaginary part is similar. We observe 
that the weight behavior is semi-periodic, with a period of 

10 as expected from (16) when (Od —G)r = 0.27T. We 

also observe that the second weight element is shifted 

relative to the first one by 0.57T . corresponding to Q)r. 

Comparing Figs. 4 and 5 we observe that the dynamic 
weight behavior is strongly periodic when signal levels are 
relatively high (iterations 4800-4819). and less so when 
signal levels are lower (iterations 4700-4719). When 
signal levels are high, the driving noise related terms in 
(16) are less influential and therefore periodicity is more 
pronounced and more clearly centered about the reference 
partition of the WF(1,2) filter. The latter is further 
illustrated by the dynamic weight behavior of NLMS(0.2) 
during iterations 4700-4719. in Fig. 6. and during 
iterations 4800-4819, in Fig. 7. 

Pig. 6. NLMS and WF weights during 4700-4719. 

i    0 

Fig. 7. NLMS and WF weights during 4800-4819 

Recall that NLMS is of necessity one step behind in 
tracking its time-varying equivalent target. Figs. 6 and 7 
illustrate that the weight vector one sample off is generally 
still closer to the target than the WF(0.2) weights are 

6. SUMMARY 

We have illustrated that a conventional NLMS adaptive 
filter, using a tapped delay line of reference values, can 
have a time-varying Wiener filter equivalent as its target. 
As a result of its tracking ability, the conventional NLMS 
adaptive filter can achieve better performance than the 
corresponding conventional Wiener filter for a given wide- 
sense stationary scenario. A noise-canceling example 
shows semi-periodic weight dynamics in tune with the 
behavior of the time-varying Wiener filter equivalent 
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